Der zustandsabhängige Ansatz in der mathematischen Optimierung

Ernst Berg

Published: 01.03.2012  〉 Volume 61 (2012), Number 1, 13-29  〉 Resort: Article 
Submitted: N. A.   〉 Feedback to authors after first review: N. A.   〉 Accepted: N. A.

ABSTRACT

Die starke Abhängigkeit von exogen determinierten Zuständen der Welt (Wetter, Krankheiten, Schädlinge etc.) ist konstituierendes Element der meisten landwirtschaftlichen Produktionsprozesse. Während diese Zustandsabhängigkeit auf der einen Seite eine Unsicherheitssituation entstehen lässt, eröffnet sie auf der anderen Seite auch vielfache Möglichkeiten, auf das Eintreffen bestimmter Zustände flexibel zu reagieren (z.B. durch Beregnung oder Schädlingsbekämpfung). Ein Konzept, das diesem Zusammenhang im Prinzip Rechnung trägt, ist der auf CHAMBERS und QUIGGIN zurückgehende sog. zustandsabhängige Ansatz. Dieser beinhaltet die zustandsabhängige Abbildung des Produktionsprozesses unter Unsicherheit als Basis für eine realitätsnahe Repräsentation sowohl individueller Entscheidungsprozesse als auch der daraus resultierenden Marktreaktionen. Der nachfolgende Beitrag beschäftigt sich mit dem zustandsabhängigen Ansatz im Kontext der mathematischen Programmierung. Er beginnt mit der Darlegung der konzeptionellen Grundlagen des Ansatzes und konzentriert sich dann auf seine Umsetzung im Rahnen der mathematischen Optimierung unter Unsicherheit. Der Vergleich mit herkömmlichen Konzepten der mathematischen Programmierung anhand eines Beispiels dokumentiert einerseits die konzeptionelle Überlegenheit des zustandsabhängigen Ansatzes, verdeutlicht gleichzeitig aber auch die aus seiner Komplexität resultierenden methodischen Herausforderungen.
CONTACT AUTHOR
PROF. DR. ERNST BERG
Institut für Lebensmittel-und Ressourcenökonomik der Rheinischen Friedrich-Wilhelms-Universität Bonn
Meckenheimer Allee 174, 53115 Bonn
E-Mail: E.Berg@uni-bonn.de
Download Cover
SUBSCRIBER CONTENT

This is a free article. You can open it here.

RELATED ARTICLES

SHARE THIS ARTICLE